POLINOMIOS Y MONOMIOS

POLINOMIOS: Suma de monomios.


P(x): 5x^3 - 4x^2 + 6x - 7


MONOMIOS: Es una expresión algebraica en la que las únicas operaciones que aparecen entre las letras son el producto y la potencia de exponente natural.


MONOMIO      PARTE LITERAL      GRADO
                                                      
   5X^3                          X^3                       3




SUMA DE POLINOMIOS





Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.
P(x) = 2x3 + 5x − 3 Q(x) = 4x − 3x2 + 2x3
1Ordenamos los polinomios, si no lo están.
Q(x) = 2x3 − 3x2 + 4x
P(x) + Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)
2Agrupamos los monomios del mismo grado.
P(x) + Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3
3Sumamos los monomios semejantes.
P(x) + Q(x) = 4x3 − 3x2 + 9x − 3
También podemos sumar polinomios escribiendo uno debajo del otro, de forma que losmonomios semejantes queden en columnas y se puedan sumar.
P(x) = 7x4 + 4x2 + 7x + 2 Q(x) = 6x3 + 8x +3
suma de polinomios
P(x) + Q(x) = 7x4 + 6x3 + 4x2 + 15x + 

RESTA DE POLINOMIOS



Al observar esta ecuación, vemos que tenemos dos bases iguales, las equis, y que están elevadas a un mismo exponente (el cuadrado).
   
                       SUMA DE MONOMIOS

Sólo podemos sumar monomios semejantes.
La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.



Producto de un número por un polinomio

Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes el producto de los coeficientes del polinomio por el número.

Producto de un monomio por un polinomio

Se multiplica el monomio por todos y cada uno de los monomios que forman el polinomio.

Producto de polinomios

Se multiplica cada monomio del primer polinomio por todos los elementos segundo polinomio.
Se suman los monomios del mismo grado.

División de polinomios

P(x) :  Q(x)
A la izquierda situamos el dividendo. Si el polinomio no es completo dejamos huecos en los lugares que correspondan.
A la derecha situamos el divisor dentro de una caja.
Dividimos el primer monomio del dividendo entre el primer monomio del divisor.
Multiplicamos cada término del polinomio divisor por el resultado anterior y lo restamos del polinomio dividendo:
Volvemos a dividir el primer monomio del dividendo entre el primer monomio del divisor. Y el resultado lo multiplicamos por el divisor y lo restamos al dividendo.
Repetimos el proceso anterior hasta que el grado del resto sea menor que el grado del divisor, y por tanto no se puede continuar dividiendo.
Para comprobar si la operación es correcta, utilizaríamos la prueba de la división:
D = d · c + r